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Abstract. The threebody problem in one dimension with a repulsive inverse-square potential 
between every pak was solved by Calogero. Here, after mapping the Ulrre-body problem to 
that of a particle on a plane, the known results of supersymmetric quanNm mechanics are used 
to solve this problem. as well as a number of new ones, algebraically. This general technique 
is applicable when the potential is  separable in the radial and angular variables on the plane, 
and i$ supersymmetric partner is shape inv@ant. M e r  discussing one example in detail, an 
exhaustive list of such exactly solvable potknhals is given. 

1. Introduction 

A long time ago, in a classic paper (Calogero 1969), Calogero gave the complete solution 
of the Schrodinger equation for three particles in one dimension, interacting pairwise by 
two-body harmonic and inverse-square potentials. Later, Wolfes (1974) used Calogero's 
method to obtain analytical solutions of the same problem in the presence of an added 
three-body potential of a special form. Attention soon shifted to the exact solutions of 
the many-body problem (Sutherland 1971, Calogero 1971) and the general question of 
integrability. A list of solvable pair potentials for the many-body problem is given in the 
review by Olshanetsky and Perelomov (1981, 1983), where other references will be found. 
There are also quasi-exactly solvable potentials for which only part of the spectrum can 
be obtained algebraically (Shifman and Turbiner 1989, Shifman 1989). Recently, there has 
been a renewed interest in the one-dimensional many-body problem of the Calogero and the 
Sutherland types (Polychronakos 1992), and their applications to the physics of spin chains 
(Haldane 1988, S h a s q  1988, Frahm 1993). In this paper, we present a general scheme 
for solving the entire specmm of the three-body problem algebraically for a whole class 
of potentials using supersymmetric quantum mechanics. The potentials belonging to this 
class include the inversesquare pair potential of Calogero, and the three-body interaction 
of Wolfes, amongst others. 

Three particles in one dimension, after the centre-of-mass motion is eliminated, have two 
independent degrees of freedom. This may therefore be mapped on to a one-body problem 
in two space dimensions, as was done by Calogero. All the potentials in the two-dimensional 
polar coordinates that are considered here have the property that the eigenvalue problem is 
uncoupled in the two coordinates. Even though the potential is non-central, this separability 
enables one to define the two constants of motion easily, as in the central potential problem. 
Obtaining an algebraic solution of the full problem further requires that the potentials in the 
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radial and the angular variables be separately supersymmehic and shape invariant. Shape 
invariant potentials in one dimension were discovered by Gendenshtein (1983). An extensive 
list of such potentials is available in the literature p u t t  et al 1988, Levai 1989, Khare et 
al 1991). By taking different combinations of shape-invariant potentials in the radial and 
angular variables, and expressing them in the one-dimensional threeparticle coordinates, 
we are able to construct fourteen different potentials for the three-body problem. For each 
of these potentials, the eigenvalue spectrum may be obtained algebraically. 

The plan of the paper is as follows. Bound-state algebraic solutions with particles in a 
harmonic potential are given in section 2, In this section, the general scheme is explained, 
and a list of the shape-invariant potentials that have been adapted for the threebody problem 
is given. To the extent that the list of the shape-invariant potentials in the literature is 
exhaustive, our list is complete. Scattering is discussed in section 3. The harmonic potential 
of section 2 may be replaced by a l/r-type potential, and this is discussed briefly in the 
final section. 
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2. Supersymmetry and the three-body problem 

In this section, we first explain how supersymmetric shape-invariant potentials may be used 
to solve a t h e b o d y  problem in one dimension. A specifc example is given in some detail, 
followed by an exhaustive list of shape-invariant potentials that generate new examples of 
exactly solvable three-body problems. 

Consider a potential V(x1, X Z ,  x3) with which the three particles are interacting. This 
may consist of a sum of painvise potentials, andfor three-body potentials. The first step is 
to define the Jacobi coordinates 

For potentials of physical interest, V(XI, XZ,  x3) is generally separable in the relative 
coordinates ( x ,  y) and the centreof-mass coordinate X. We shall only be interested in 
the relative motion of the particles, and assume, without loss of generality, that V does not 
depend on X. Following the notation of Calogero, define the polar coordinates (r, 4): 

x = r s i n @  y = r c o s @  .'=;[(XI - X Z ) ~ + ( ~ Z - X ~ ~ ~ + ( X ~ - ~ I ) ~ ] .  (2) 

Obviously, the variables r, 4 have ranges 0 6 r 6 CO, and 0 6 @ 6 21r. It is straightforward 
to show that 

(xl -x2) = &sin$ (x2-x3) = & s i n ( 4 + ~ ~ / 3 )  (x3-x I )  = &sin(4+4~/3). 
(3) 

The potential of the threebody problem in polar coordinates is denoted by V(r,  $), and 
the problem is formally equivalent to that of one particle on a plane. It is well known that 
further separation of the variables r and 4 in the classical (or quantum) equations of motion 
takes place (Landau and Lifshitz 1976) for the form 
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where fi(r) and U(@) are arbitrary. For such a form, the problem is immediately integrable, 
and the two constants of motion are easily obtained. The ScbrGdinger equation for the 
eigenvalue problem is @ = 1,ZM = 1) 

On writing the eigenfunction Yn[ ( r ,  @) as 

1 
%I (r, 4)  = -+.I O)f i (@) f i  

a little algebra yields the radial equation 

where B: is the eigenvalue of the angularequation 

The two constants of motion are the eigenvalues E,! an B:. All i is very well known, 
and it is clear that the threebody problem has now reduced to the solution of the two 
uncoupled one-dimensional equations of one particle, given by (7) and (8). 

At this stage, we use the well known result of supersymmetry that for shape-invariant 
potentials the solutions may be obtained algebraically (Infeld and Hull 1951, Gendenshtein 
1983). To appreciate what is meant by shape invariance, consider a 'super potential' W(s) ,  
where the variable s may stand for r or @. The supersymmetric partners VJs) and V+(s) 
are ( W 2 -  W') and (W2+ W') respectively, the prime denoting a differentiation with respect 
to s. If the pair V* are of the same shape, but differ only in the parameters which appear 
in them they are said to be shape invariant. For example, consider V&, a), where is 
a set of parameters. Shape invariance implies that 

V+(S, UO) = V-(s, all + W l )  (9) 

where a1 is an arbiwary function of no (a1 = f(@)), and the remainder R(u1) is independent 
of s. In such a case the energy spectrum of the Hamiltonian with the potential V- is given 
by 

with uk = fk(ao), i.e. the function f applies k-times. Subsequently, it has been shown that 
the corresponding eigenfunctions can also be obtained algebraically (Dutt et al 1986), so 
the problem is completely solved. Before giving the list of three-body potentials that may 
be solved using this method, we consider one example in detail. Take 

v(~ l ,~2 ,x3 )=vc+v1  (11) 
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where 
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and 

Note that both Vc and VI are independent of the centre-of-mass coordinate X. Further, V ,  
is precisely the potential used by Calogero (1969), with g > -f to avoid the collapse of 
the system. Transforming to polar coordinates, we obtain 

- 
(14) 3 2 2  U ( r )  = p r 

and 

U($) = pg cosec23+ + 5 ficot34. (1-5) 

Here. we have used the identities 

Both the radial and angular potentials give by (14) and (15) are known to be shape invariant, 
and the solutions may be written down algebraically @utt et a1 1988, Levai 1989). For the 
radial part, the superpotential is 

The energy eigenvalues are of the same form as obtained by Calogero 

and so are the eigenfunctions 

with Bt > 0. For the angular part U($) given by (15). the superpotential is of the form 

(20) 
C W = -Acot3$ - - 
A (A > 0) 
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where C and A are parameters independent of @. Then 

In this example, V, are shape invariant because they obey (9), i.e. 

CZ 
(A+3)' AZ + - - A 2 .  

C2 
V+(A, C, 4) = V-(A + 3, C, @) + (A + 3)' - 

This in turn implies that the energy eigenvalues of V- are given by 

C' - A 2 + -  
C' 

(A + 31)' AZ ' 
E: = (A + 31)' - 

From this it follows that for the potential U(@) given by (15). the eigenvalue spectrum of 
(8)  is^ 

1 2  9 f? E:~=9(Z+a+Z) -- 
16 ( I  + a  + 1)' 

where 

a=;(l+zg)'/Z. 

As in Calogero, g z -4 for meaningful solutions. The unnormalized sound-state 
wavefunction is given by 

valid in the range 0 < 34 < n. For distinguishable particles, a given value of @ defines a 
specific ordering. For 0 < 4 < n/3; equation (3) implies x1 > x2 > x3, and other ranges of 
@ correspond to different orderings (Calogero 1969, Wolfes 1974). .For singular repulsive 
potentials, crossing is not allowed, and Fo(@) of.(23) is zero outside 0 f q5 < x/3. 
Following Calogero, the wavefunction for the other ranges may be constructed. For 
indistinguishable particles, similarly, symmetrized or antisymmetrized wavefunctions may 
be constructed and this will not he repeated here. From the table given by Levai (1989) the 
general solution f i (@) of (15) is given by (f = I +a + f) 

In the above equation, P,"' is the Jacobi polynomial of the argument (icoW@). Note that 
by putting f1 = 0 in (21) and (24), the usual Calogero solution for the inverse square + 
harmonic potential is obtained. 

A similar technique as above may be used to solve other separable potentials of the form 
given by (4), which are displayed in table 1. The first column gives the list of potentials 
U(@) that are solvable algebraically due to the shape invariance in the @-coordinate. This list 
is complete, since no other shape-invariant potential in the angular variable is known. The 
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next column gives the potentials in the Coordinates ( X I ,  x2 ,  x3) corresponding to U @ ) / + .  
Two cyclic terms are always to be added in this column to make the potential symmetric. 
As a result U is a function of 34 .  The third column gives B:. the eigenvalues of (8). The 
eigenfunctions and other details (like the superpotential "(4)) may be obtained by looking 
up Dutt et al (1988) and Levai (1989). The radial eigenvalue problem can also be solved 
algebraically by taking specific radial potentials. In the example discussed earlier, C ( r )  was 
taken to be a simple harmonic potential. The other choice of a shape-invariant form for the 
radial part is an attractive I/r-type potential, as discussed briefly in section 4. Combining 
these two radial forms with the seven distinct angular potentials listed in the table yields, 
all in all, fourteen three-body potentials that may be solved algebraically. 

There are other types of three-body potentials that may be constructed whose angular 
part is solvable, but is not of the supersymmetric shapinvariant form as before. In such 
examples, however, although the eigenfunctions &(e) are expressible in terms of well 
known functions, the eigenspectrum of B: is not found to be in a simple closed form. For 
example, keeping in mind the identity 

(25) 

a three-body potential of the form (l/r2) sin'34 may be constructed. Combining this with 
the pair potential of Calogero that yielded l/(r2 sin23$), the angular part of the threebody 
Schrodinger equation may be written in the form 

1 - (x1 - xz)(xz - x3)(x3 - X I )  = - r3  sin34 z/z 

B: - U  cos64 - - Fi = O .  

It is not difficult to show that this may be reduced to the well known differential equation 
(Erdelyi 1955) for spheroidal wavefunctions (for b > a - i), whose eigenvalues, even 
though known, are not expressible in a simple closed form. 

Until now, we have only been discussing those cases where the Schrodinger equation 
in the variables r and 4 are separable, and exactly solvable. The three-body potential given 
by (25) is of special interest, however, even though its form does not allow separation of 
the coordinates r and 4. To be specific, consider the potential 

(2'0 2 VH = $m2 (xi - x j )  - 1 (xi - xz)(xz - ~ 3 ~ x 3  - 11) .  
C<j 

Transforming to polar coordinates using (3). this reduces to 

v H = - w  3 2 2  r + - r 3 s i n 3 4  A 
8 z/z 

which is the famous Henon-Heiles potential (Henon and Heiles 1964) for a particle in 
two space dimensions. This potential is non-integrable, and has been studied extensively 
in connection with chaos. Therefore VH given by (27) may be regarded as an example 
of a potential that gives rise to classical chaotic motion of three particles in one spatial 
dimension. Since it is well known that classical periodic orbits have a close connection 
with the quantum density of states (Gutzwiller 1990), it will be of interest to map the 
two-dimensional periodic orbits of the Henon-Heiles potential (Brack et al 1993 ) onto the 
one-dimensional motion of the three particles. 
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3. The tbree-body scattering problem 

The three-body scattering problem with the inverse-square pair potential, g Cicj (xi - x ~ ) - ~ ,  
was solved by Marchioro (1969). When an additional three-body potential (see case (c) of 
table 1) is added to this, the problem is still solvable (Calogero and Marchioro 1974). Both 
the classical and quantum solutions are strikingly simple in these problems. Asymptotically, 
with the inverse-square pair potential, the momenta of the scattered particles, pi are related 
to the incident ones pi by pi = p4-i, i = 1,2,3, and the total phase shift is independent of 
1. With the addition of the threebody potential, the asymptotic momenta just change sign, 
and the phase shii still remains I-independent. We have also studied the scattering problem 
with the new potentials (cited in the last section) after dropping the harmonic potential. 
Even though the problems are still integrable, we find that the simplicity of the Calogero- 
Marchioro examples is lost. The scatterings with the new interactions cannot simply be 
expressed as an exchange between the incoming and asymptotic outgoing momenta. As an 
example, consider the classical scattering of three particles with the potential 

which is the same as given by case (f) in table 1. Because the variables T,  and 4 are 
separable, we may write, following Marchioro's notation (Marchioro 1969), 

?. 2 p+ + g cosec2 34 - :2 f3 cot34 cosec 34 = BZ . (31) 

Here E is the total energy and B the angular constant of motion. It is straightforward to 
perform the integrations. Writing 

we obtain 

(33) 

and 

In the above, 4 = 40 at f = b. Let 4 = 4i for (t  4 0 )  + w, and 4 = q4f for (t-b) + -w. 
Then 

b 1  
cos3& - - - - v G T i Z c o s  

' - 2  2 

and 
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Therefore only for b = 0, i.e. for f3 = 0, does cos3$i = -cos3&, leadmg to 
3Qi = (iz 3&+rr). If one considers the sector for which 0 < 4 < n / 3 ,  then @i = -&+x/3 
for b = 0. It was this peculiarity that yielded the simple relationships between the initial 
and the final asymptotic momenta of the particles. But for f3 # 0, no such relationship 
exists, and the simplicity in the scattering process is lost. For the same example, similar 
complications arise in the quantum treatment of the scattering problem with f 3  # 0. In this 
case the angular wavefunction given by (34) does not possess a simple s y m e h y  property 
for @ + I$ - x/3  when a # p .  For other examples like Vl(given by (3)) plus the inverse 
square pair potential, the situation is even more complicated, and will not be discussed 
further. 

4. Discussion 

The shape-invariant potentials~in the angular variable Q were combined with a harmonic 
potential in the radial coordinate to obtain exact solutions in section 2. This led to a discrete 
eigenvalue spectrum. The harmonic oscillator potential may be replaced by an attractive 
(l/r)-type interaction, giving rise to both discrete and continuous energies. Exact solutions 
for all the shape-invariant potentials described earlier can again be obtained algebraically. 
As one example, take the potential 

First consider the classical problem. Using the notation of (30) and (31), we obtain 

(37) 
cos 3r$ 

u r  J1- 9 g / ( 2  E 2 )  

For g = 0, and E < 0, equation (37) reduces to the periodic orbit of an ellipse in the polar 
coordinates, 

(38) P - = l + e c o s @  
r 

where p = 2B2/cr is half the latus rectum, and e = J(1 -4IEIB'/a') is the eccentricity 
of the ellipse (Landau and Lifshitz 1976). For g = 0, crossing between any pair of particles 
is allowed, and the periodic orbit given by (49) may be mapped on to the motion of three 
particles along a line. On the other hand, for g # 0, equation (37) does not reduce to a 
closed orbit for the bound problem. For the special case when g # 0 between one pair, and 
0 between the other two pairs, (37) still reduces to the closed orbit form of (38). However, 
crossing between the interacting pair is not allowed, and the mapping in each sector has  
to be done accordingly. The Schriidinger equation with the potential V of (36) is easy to 
solve. Writing the wavefunction %&-, 4) = (l / ,F)uni(r)  f i (+) as before, the radial part 
obeys the standard Coulomb-type equation with the bound-state wavefunction 
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where ro = ~ ( B I  + n + ~ ) / L x ,  and LiBJ is the Laguene polynomial. The corresponding 
eigenvalues are 
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(12 

4(n+ Bi + f)’ Enl = - n = 0 , 1 , 2  (... I=O,1 ,2 . .  

As before, the angular constants El are the eigenvalues of the equation 

(40) 

The unnormalized solutions fi  are expressed in terms of the Gegenbauer polynomials 
(Calogero 1969), 

Here the constant a is given by (22), and the wavefunction vanishes outside the range 
x1 t xz t xg. The eigenvalues E: are the same as in (21) with f, = 0, so 

Similarly, for the continuum stam, the scattering problem for the radial Coulomb part may 
be solved in the standard fashion (Landau and Lifshitz 1976). with the phase shift 8, given 
by the usual Coulomb expression, but with I replaced by Et. 

The three-body problem in higher dimensions may also be mapped onto a one-body 
problem. For example, the three-body problem in two space dimensions has been reduced 
to the four-dimensional hyperspherical coordinates (Kilpatrick and Larsen 1987) of one 
particle. This method has been used to obtain the spectrum of three anyons in an oscillator 
potential (Khare and McCabe 1991, Law et al 1992). The technique of supersymmetric 
quantum mechanics, so aptly adapted for the one-dimensional three-body problem, has not 
been generalized for higher dimensions, and hence algebraic solutions cannot be obtained 
in such cases. 
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